https://www.linkedin.com/feed/update/urn:li:activity:6485126395470184448

Let x, y, z be real numbers such that $x^2 + y^2 + z^2 = 9$. Prove that $2(x + y + z) - xyz \le 10$.

Solution by Arkady Alt , San Jose , California, USA.

First we will prove inequality that for any real $x,y,z \ge 0$ such that $x^2 + y^2 + z^2 = 9$ holds inequality $2(x + y + z) - xyz \le 6\sqrt{2}$ ($6\sqrt{2} < 10$).

Let
$$s := x + y + z, p := xy + yz + zx, q := xyz$$
.

Since
$$9q \ge 4sp - s^3$$
 (Schur's Inequality $\sum x(x-y)(x-z) \ge 0$) and

$$9 = x^2 + y^2 + z^2 = s^2 - 2p \iff 2p = s^2 - 9 \text{ then } 9q \ge 2s(s^2 - 9) - s^3 = s^3 - 18s$$

and, therefore,
$$q \ge q_* = \max \left\{ 0, \frac{s^3 - 18s}{9} \right\}$$
.

Noting that $27 = 3(x^2 + y^2 + z^2) \ge (x + y + z)^2 = s^2 \iff s \le 3\sqrt{3}$, we obtain:

1.
$$q_* = \frac{s^3 - 18s}{9}$$
 for $s \in [3\sqrt{2}, 3\sqrt{3}]$ and, therefore, for such s we have

$$6\sqrt{2} - (2(x+y+z) - xyz) = 6\sqrt{2} - 2s + q \ge 6\sqrt{2} - 2s + q_* = 6\sqrt{2} - 2s + \frac{s^3 - 18s}{9} =$$

$$\frac{\left(s-3\sqrt{2}\right)\left(3\sqrt{2}\,s+s^2-18\right)}{9}\geq \frac{\left(s-3\sqrt{2}\right)\left(s^2-18\right)}{9}=\frac{\left(s-3\sqrt{2}\right)^2\left(s+3\sqrt{2}\right)}{9}\geq 0;$$

2.
$$q_* = \frac{s^3 - 18s}{9}$$
 for $s \in (0, 3\sqrt{2}]$ and, therefore, for such s we have

$$6\sqrt{2} - (2(x+y+z) - xyz) = 6\sqrt{2} - 2s + q \ge 6\sqrt{2} - 2s = 2(3\sqrt{2} - s) > 0.$$

Consider now two cases:

1. If xyz > 0 then

$$2(x+y+z) - xyz \le 2(|x|+|y|+|z|) - |xyz| = 2(|x|+|y|+|z|) - |x| \cdot |y| \cdot |z| < 10$$

by considered above case
$$x, y, z \ge 0$$
 (because $|x|^2 + |y|^2 + |z|^2 = x^2 + y^2 + z^2 = 9$);

2. If
$$xyz < 0$$
 then at least one of the numbers x, y, z is negative, let it be z .

Then
$$xy > 0, z = -|z|$$
 and, therefore, $2(x + y + z) - xyz \le 2(|x| + |y|) - 2|z| + |x| \cdot |y| \cdot |z|$.

Let
$$f(x,y,z) := 2(x+y) - 2z + xyz$$
, where $x,y,z > 0$ and $x^2 + y^2 + z^2 = 9$.

We will prove that for such x, y, z holds $\max f(x, y, z) = 10$.

Since
$$x + y \le \sqrt{2(x^2 + y^2)}$$
, $xy \le \frac{x^2 + y^2}{2}$ then $f(x, y, z) \le 2\sqrt{2(x^2 + y^2)} - 2z + z \cdot \frac{x^2 + y^2}{2} = 2\sqrt{2(9 - z^2)} - 2z + z \cdot \frac{9 - z^2}{2} = 2\sqrt{2(9 - z^2)} - \frac{z^3}{2} + \frac{5z}{2}$.

$$2\sqrt{2(9-z^2)} - 2z + z \cdot \frac{y-z}{2} = 2\sqrt{2(9-z^2)} - \frac{z}{2} + \frac{3z}{2}$$

Let
$$h(z) := 2\sqrt{2(9-z^2)} - \frac{z^3}{2} + \frac{5z}{2}$$
, where $z \in (0,3)$.

Since
$$h'(z) = -2\sqrt{2} \frac{z}{\sqrt{9-z^2}} - \frac{3z^2}{2} + \frac{5}{2}$$
 strictly decrease on (0,3) and $h'(1) = 0$

then
$$h'(z) > 0$$
 on $(0,1), h'(z) < 0$ on $(1,3)$ and, therefore,

$$\max\{h(z) \mid z \in (0,3)\} = h(1) = 2\sqrt{2(9-1^2)} - \frac{1^3}{2} + \frac{5 \cdot 1}{2} = 10.$$

Hence, $2(x+y+z) - xyz \le f(|x|,|y|,|z|) \le 10$ and equality occurs iff x = y = 2, z = -1.

Combining both considered cases we can conclude that

$$2(x+y+z)-xyz\leq 10$$
 for any real $x,y,z\in\mathbb{R}$ such that $x^2+y^2+z^2=9$

with equality iff $(x,y,z) \in \{(2,2,-1),(2,-1,2),(-1,2,2)\}.$